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The stability of spiral flow between rotating and sliding cylinders is considered. 
In  the limit of narrow gap, a ‘modified’ energy theory is constructed. This theory 
exploits the consequences of assuming the existence of a preferred spiral direction 
along which disturbances do not vary. The flow is also analyzed from the 
viewpoint of linearized theory. Both problems depend strongly on the sign of 
Rayleigh’s discriminant, - 2Q5. Here Q is the component of angular velocity, 
and 6 is the component of total vorticity of Qhe basic flow in the direction per- 
pendicular to the spiral ribbons on which the disturbance is constant. When the 
discriminant is negative, there is evidently no instability to infinitesimal distur- 
bances, and the spiral disturbance whose energy increases at the smallest R is 
a roll whose axis is perpendicular to the stream. This restores and generalizes 
Orr’s non-linear results for disturbances having a preferred spiral direction. When 
the discriminant is positive, the critical disturbances of linear theory and the 
modified energy theory are spiral vortices. The differences between the energy 
and linear limits can be made smaller in the restricted class of disturbances with 
coincidence achieved for axisymmetric disturbances in the rotating cylinder 
problem in the limit of narrow gap. For the sliding-rotating case, the critical 
disturbance of the linear theory appears as a periodic wave in a co-ordinate 
system fixed on the outer cylinder. This wave has a dimensionless frequency 
equal to - :a sin (x - +), where a is the wave-number, x is the angle between the 
pipe axis and the direction of motion of the inner cylinder relative to the outer 
one, and @ is the disturbance spiral angle. 

Instability limits, frequencies and wave-numbers are computed numerically 
when the cylinder gap is not narrow. These are in even closer agreement with 
Ludwieg’s experimental results than the approximate results which were given 
in part 1. 

1. Introduction 
This study continues the work reported in Joseph & Munson ( 1  W O ) ,  henceforth 

called part 1, in which the stability of Couette flow between rotating and sliding 
cylinders was studied. There we analyzed the basic spiral character of the 
instability, and showed how a suitably adjusted rotation could be chosen to 
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bring the stability and instability limits together or nearly together. An approxi- 
mate linear theory was given, and the results of this and the energy theory 
compared with the experiments of Ludwieg. In  this paper, we continue the study 
of the stability of the spiral flow from the viewpoint of global theory, in which 
the linear stability theory gives suficient conditions for instability, and energy 
theory gives suficient conditions for stability. 

The novel point here is the working out of a ‘modified’ energy theory, in which 
one exploits the consequences of assuming the existence of a preferred spiral 
direction along which disturbances do not vary. A basis for comparison of the 
results of such a non-linear theory with linear theory follows from the fact that 
the linear theory necessarily generates a preferred direction (wave-numbers 
along the axis and azimuth). 

A modified energy theory is developed for Couette flow between rotating 
cylinders in Joseph & Hung (1971). There, the consequences of assuming axial 
symmetry of the (non-linear) disturbance from the start are explored. It is shown 
in Joseph & Hung that, in the class of  axially symmetric solutions, the energy 
criterion for non-linear stability is in nearly perfect agreement with Taylor’s 
linear stability boundary when the two cylinders rotate in the same sense. The 
criterion of Joseph & Hung is global (it applies to any initial condition) only for 
the rotating plane Couette flow limit (RPCF); otherwise, the criterion holds only 
wberi the initial amplitude is smaller than some critical value which is explicitly 
estimated in Joseph & Hung. 

It is preferable, for several reasons connected with the clarity of  the exposition 
and the finality of the results, to consider in detail ( $ 5  3 , 4 )  the ‘narrow gap ’ limit 
(i.e. RPCP). The effect of sliding cylinders along the axis in the round geometry 
is taken up in RPCF by the fact that the direction of shearing and rotation are 
not required to be perpendicular. 

The modified energy analysis gives: (i) the form of the spiral disturbance that 
will make the disturbance ‘energy’ increase at  the smallest R (Reynolds 
number); (ii) the smallest R; and (iii) the form of the ‘energy’ (the Lyaponouv 
functional) that increases initially a t  the smallest R. In  explanation of the 
difference between energy analysis and modified energy analysis we note that 
the two analyses refer to different energies. The modified energy analysis holds 
only for spiral disturbances; though energy analysis leads finally to spiral 
disturbances, it is not restricted to these at  the beginning. 

In  the analysis of rotating plane Couette flow, Rayleigh’s discriminant - 2Q2f; 
enters strongly (Q is the angular velocity of the fluid and < is its total vorticity). 
The importance of this quantity in spiral flow was first noted by McIntyre & 
Pedley (in Pedley 1969). Here the relevant discriminant is the product 
( - 2Qut&,, = H) of the component of - 2Q and 6 normal to planes on which the 
disturbance is constant. Numerical analysis of the full linear theory problem 
gives solutions only when F > 0 (destabilizing), and never when P < o 
(stabilizing). 

The modified energy theory €or RPCP also depends strongly on the sign of H. 
We prove, in Q 4, that when F 6 0 the spiral disturbance that makes a disturbance 
‘energy’ increase initially at  the smallest R is a transverse vortex (of the Qrr- 
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Sommerfeld type). This result restores with rigour and with greater generality 
(but only for a restricted set of (spiral) initial conditions) Orr’s original energy 
result and the critical limit R = 177.22. It still remains true, of course, that a 
longitudinal vortex disturbance can be found, which will make the actual 
disturbance energy increase initially when R > 241708 (cf. part 1). 

Finally, in $ 5  we report results of exact numerical analysis of the linear 
stability problem for spiral Couette flow. This replaces the mean-radius approxi- 
mation used for the linear theory in part 1.  In  some of the quantitative details 
of the instability, the exact result differs appreciably from the approximation. 
The agreement between the exact linear theory and the experiments of Ludwieg 
(1964) is good ($6) .  

2. Spiral vortex disturbances of spiral Couette flow 
Spiral Couette flow is induced by the shearing motion of one cylinder (of radius 

R,) relative to a second, larger cylinder (of radius R,) on the fluid that fills the 
annulus between the cylinders. The velocities of the boundary are steady, and 
give rise to a steady solution of the Navier-Stokes equations, 

where (x, #, ?) are cylindrical co-ordinates, 7 = R,/R,, U, is the sliding speed of 
the inner cylinder relative to the outer, 

A =  RiQ,-R!n,, B = - RiR2,( Q2 - Q, ) 
Ri - R: Ri-Rf ’ 

and Ql and Q, are the angular velocities of the inner and outer cylinders. 
The equations governing the evolution of a disturbance u = (u.,, u6, u;) of the 

basic spiral flow U = (Uz, U6, 0) are, for convenience, written in a co-ordinate 
system fixed on the outer cylinder and rotating at a constant angular velocity. 
Thus, in the annulus, 

- + 2 G ? x u + ( u + u ) . v u + u . v u  = -v  au 
at 

I divu = 0, u = 0 at  R, and R,, 

u is periodic in 4, 
u is periodic, almost periodic or belongs to a 

(2.2 a- f ) 

I Fourier transform class in x, 

and u = u , f O  a t  t = 0 .  

The idea of this paper is to exploit several consequences of the assumption that 
disturbances on cylinders of radius r around the axis are constant along certain 
spiral lines. This idea is most readily carried out in RPCF. It may help the reader 
to turn to $ 4  for a discussion of the energy consequences of the assumption of a 
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spiral disturbance. We choose, however, to start the analysis with a discussion 
of the linear theory. It is in the linear theory that the role of the Rayleigh 
discriminant is most critical; the sign of this discriminant seems decisive for the 
existence of instability in a range of parameters close to those investigated in 
Ludwieg's (1 964) experiment. 

3. Linear stability analysis of RPCF 
For definiteness, we shall choose S2 = - Q2ex, where Q, > 0 is the angular 

velocity of the outer cylinder. Then the co-ordinates rotate with the outer 

a= -ex& 

FIGURE 1. Rotating sliding cylinders in a co-ordinate system rotating with the outer 
cylinder in the narrow gap (rotating plane C o u e t k  flow) limit. 

cylinder. In  the rotating system, the outer cylinder is stationary, and the inner 
cylinder moves with a circumferential speed R, (Q, - a2 ), and slides forward a t  
the rate Uc (see figure 1). I n  the limit 7 -+ 1 one may find that 

and U, = Ucln(P/R2)/ln~-+- [ (R, - R,) -21, 
R2 - Rl 

(3.1 b )  

where we have set 4 = R,+&(O < 2 < R2-R,). 
Since we are considering the limit 7 -+ 1, we must allow for the possibility that, 

with a fixed rate of shear, R,-R1+O. 
Then we should want 

to be bounded. The boundedness of Qv, when 91 + 1, implies that Q, - Q, --f 0. 
Hence, apart from the uninteresting case in which Ql+ 0, Q, -+ 0, we are here 
restricted to the problem in which Q, and Ql have the same sense. 

I n  dimensionless variables z = S/(R2 - R,), we have 

2) cos x, (3.3a, b )  ~ = 4 = ( 1 - z ) s i n x ,  U ~ = - = ( l -  U, 
U U' 
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where U' = [RF(Q, - Q, ), + U34 = (R, - Rl ) (!& + a$)*, 
sinx = Q2,(R, - Rl)/U' = Q,/(Q& + cosx = Q,/( Q'& + Q;)4, 

and a, = Q2/(Q2, + a;)+. 
Disturbances of rotating plane Couette flow necessarily satisfy 

-+ (u + U) .vu- w cos X = - azp+ - v2u, 
at R 
av 1 
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at R 
-+ (U + u) . vw - 2Q2v = - azp+-vzw, 

(3 .4a-d)  

The disturbance u and p are assumed to be almost periodic (in x, y) and u = 0 
at z = 0, 1. 

The equations which follow upon linearizing (3 .4)  may be combined into 

(z-z l V 2  ) v2w-2Q24 = 0, (3.5a) 

(2 - $V,) 4 + cos x aLw + (2a2 - sin X) a:,w = 0, ( 3 . 5 b )  

where 4 = (a:, + a ;v)~  + a ; p ,  

4 = w = a,w = 0. 

d a  - = -+ (1  - z )  sinX a, + (1 - x )  cosx a,. 
at at 

and 

At the boundary, (3 .5c)  

Assuming disturbances in the form of Fourier series with terms proportio na 
to exp {at + iax + ipy}, we find, for the Fourier coefficients 8 ( z )  and &z),  

( R e ( a ) + i Y - - L  R l >  L8-2Q2$= 0, 

( R e ( a ) + i Y - - ~ )  1 ~-a(pcosx+a(a~,-sinX))8 = 0, 
R 

f$ = 8 = D8 = olz=o,l, (3.6 a-c) 

where L = D2-a,,  D = d/dz, a2 = a2+p2, Y = c-azsin(X-$), 

c = Im(cr)+asin(X-$), 

a 
(3.7) 

where a = -asin$, P=acos$.  (3 .8)  

sin(X-$) = P -sinX+-cosX, 
U a 

and 

Here $ is the angle between x and X I ,  where x is the parallel to 8 = -fi2er,  
and x' is the direction along which disturbances are constant (figure 2). 
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Equations (3.6a, b )  combine into 

( R 

which is to be solved along with 

8 = D8 = 

(3.9) 

(3.10) 

FIGURE 2. The basic flow spiral angle x and the disturbance angle @. For the critical 
energy disturbance, 11. = @&. For the critical linear disturbance, 11. = 11.p 

Here F($,  x, fi,) = 2 ~ , s i n $ ( c o s ( ~ - ~ ) - 2 f i ~ s i n $ )  (3.1 1 )  

and -cQ 6 P < tcos"(X-$). 

The linear stability limit R, is the smallest value of R over all neutral eigen- 
solutions (Re ((T) = 0 )  and over the wave-number radius a and angle II.. 

A special solution of (3.9) can be found when Y = 0. It will not ordinarily 
be possible to  put 9 ( z )  = 0,  but this is possible when x = $. Then the spiral 
angle x, which is equal to  the energy spiral angle ~& (see figure 2) is also the 
angle $ along which disturbances do not vary. I n  this case, the problem 
L38 + R2a2F8 = 0 and (3.10) define the BBnard problem, 

RZF(x,x, a,) = g(a2), ming(a2) = g( (3.12)2) = 1708. (3.12) 
I2 

Equations (3.12) were first given by Kiessling (1963). They imply that 

R2 = 1708/P(x,x, 0,). 

Of course, the special solution (3.12) could hold only so long as 12, 
( -  m < fi2 < 00) is compatible with the inequality 

P ( X ,  x, LIZ) = 2fii,sinx(1 - 2 f i , s i n ~ )  > 0. 

The values of x and O2 which make F = $have a special importance. Suppose 
that a2 = t sin x. Then F = 8 and the criterion 

R < ( ( R 2 - R l ) / ~ ) ( Q & + Q b ) *  < 241708 
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i s  both necessary and suficient for all periodic disturbances to decay monotonically. 
The proof of this theorem follows by comparing the linear solution with the 
unmodified energy problem (Busse 1970; see part 1) .  It follows that the criterion 
R < 241708 is both necessary and sufficient for stability, and that the most 
persistent infinitesimal disturbance is just the one whose energy increases 
initially at  the smallest R. In  the general case the energy spiral angle x and the 
disturbance spiral angle y? do not coincide. Then Y cannot vanish everywhere. 

- 

a2 a8 +& R, F8 aL +L I m ( 4  R L  P L  

7 = 1.0 0.30 3.12 34.80" 0.6057 91.95 0.1936 2.925 20.915" 0.27693 111.19 0.1644 
x = 10" 0.50 3.12 25.85" 0.8290 85.68 0.2293 3.009 19.55" 0.24961 92.97 0.2180 

0.70 3.12 19.77" 0.9250 83.74 0.2424 3.061 17.10" 0.18917 86.62 0.2390 
0.90 3.12 15.75" 0.9649 83.01 0.2474 3.10 14.50" 0.12161 84,08 0.2462 
1-44 3.12 10.00" 1.000 82.06 0.2500 3.12 10.00" 0 82.06 0-2500 
1.80 3.12 8.25" 1.0696 82.73 0.2495 3.114 8.10" -0.05162 82'84 0.2497 
2.20 3.12 6.75" 1.0747 82.83 0.2489 3.101 6.63" -0'091144 83'24 0.2491 
2.40 3.12 6.15" 1.0635 82'86 0.2486 3.097 6.20" -0.10264 83.44 0.2485 

7 = 1.0 0.20 3.12 51.01" 0.4993 92.84 0.1936 3.07 35.70" 0.152456 100.11 0.1778 
x = 30" 0.30 3.12 43.02" 0.7246 85.48 0.2325 3.093 34.75" 0.12806 88.36 0.2239 

0.40 3.12 35.90" 0.8925 83.15 0.2466 3.108 32.60" 0.070494 83.79 0.2448 
0.50 3-12 30.00" 1.000 82.66 0,2500 3.12 30.00" 0 82.66 0.2500 
0.60 3.12 25.40" 1.0678 82'92 0'2481 3.11 27.15" -0'077317 83.46 0'2471 
0.70 3.12 21.73" 1.0998 83'43 0.2443 3'086 24.38" -0.151106 85.43 0.2412 
0.80 3.12 18.90" 1.1193 84.06 0.2400 3.042 21.77" -0'21773 88.13 0.2352 
0.90 3.12 16.65" 1'1280 84.65 0.2358 3.00 19.48" -0.27392 91.23 0.2299 
1.00 3.12 14.81" 1'1265 85.20 0'2320 2.935 17.51" -0.317375 94.55 0.2254 

?) = 1.0 0.10 3.12 75.87" 0.2520 105.83 0.1489 3.106 62-13' 0.05772 108-76 0.1454 
x = 60" 0.15 3.12 71.61" 0.4097 92.48 0.1978 3.105 62.21" 0.059868 93.91 0.1948 

0.20 3.12 67.89" 0.5978 86.06 0.2297 3.110 61.50" 0.040705 86.67 0.2278 
0.28868 3.12 60.00" 1.000 82.66 0.2500 3.12 60.00" 0 82.66 0.2500 

0.40 3.12 47.35" 1.5192 86.14 0.2279 3.10 56.10" -0'105424 88.49 0.2216 
0.50 3.12 35.54" 1'7669 92.52 0'1912 2.98 50.86" -0.23668 108.33 0.1642 
0.60 3.12 26.40" 1'7823 98'95 0.1597 2.404 42'82" - 0'35504 176.31 0'1137 

TABLE 1. Values of the critical parameters of the linear and energy theory when g = 1. 
(For x = go", see figure 3) 

For the case Y = 0,  McIntyre and Pedley (Pedley 1969) have shown that a 
necessary and sufficient condition for the existence of an inviscid (R-tco) 
solution of ( 3 . 6 ~ )  is that P > 0. Purthermore, they show that -P is the product 
of the overall angular velocity and the total vorticity, i.e. P is Rayleigh's 
discriminant. In  the general case x + $, F is still Rayleigh's discriminant, i.e. 

F($,  x, 0,) = - 2Q.&/,, (3.13) 

where = eve. G? and & = e?,, . (ZG? + curl U) are components of the overall 
angular velocity (G?) and total vorticity (2S2 + curl U) in the direction y' normal 
to the direction x' in which disturbances do not vary. To verify (3.13) note that 
G? = - &ez, U = (e,cosx+e,sinx) ( 1  -2) and use the geometry of figure 2. 

Numerical analysis of ( 3.9), ( 3.10) gives solutions for whenever F > 0,  and not 
otherwise (see table 1). Problem (3.9),  (3.10) contains plane Couette flow ( F  = 0 )  
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as a special case. A rigorous demonstration that there are no solutions of (3.9), 
(3.10) with Re (c) 2 0 and F < 0 has yet to be constructed. The determination 
of the wave speed Im (c) of the most persistent small disturbance has a parti- 
cularly simple solution. The answer is that 

Im (c) = - Qasin (x - $). (3.14) 

The argument leading to (3.14) starts with the observation that every solution 

{Y[ I 2a2 6 12 + aZF( 1 D8 12 + a21 8 I ”I} = 0.t (3.15) 

To prove (3.15) set f = - 2a2$ andjntroduce P of (3.11) into (3.6b). This leads 
us to 

[Re (c) + iY] L8 = - L2& - f ,  ( 3 . 1 6 ~ )  

(3.16 b )  [Re (c) + iY] f = - L f + u2F&. 

of (3.9), (3.10)) or the equivalent problem (3.6a-c),  has 

1 
R 

1 
R and 

Form (&*(3.16a))- (f*(3.16b)}/a2F to produce 

where * designates the complex conjugate. Subtraction of tlie complex conju- 
gate of (3.17) from (3.17) gives 

0 = Y 8+L8+8L8*-- = - 2 ( Y ( p & l 2 + U 2 1 8 1 2 +  I f 12/a2P)), 
21f U 2 P  1 2 ) ?  

{ D Y ( 8 * D 8  + &D&*)) = 0, 

( (  
where the term 

which arises from integration by parts, vanishes because D Y  is a constant. 
Equation (3.15) shows that Y(x) must change sign on (0, 1). In  fact Y(+) = 0. 

To see this, choose c = I m ( c ) + a s i n ( ~ - $ )  = hasin (x-$), so that Y(+) = 0. 
Then write (3.15) and (3.16) in the variable z’ = x - +, - + < z’ 6 Q. The form of 
(3 .15) ,  (3.16) is unchanged by the variable change, but 

9’(z‘) = - z‘a sin (x - $). (3.18) 

Next, decompose f and & into even and odd parts; insert these representations 
into (3.16), and identify the even and odd parts of the resulting equations; e.g. 
from (3.16b), we find 

Re(c)fo-iiX’ sin(x-$)af, = -L2fo+a2F80. 

This, and the other three equations, show that we may take 

8 = W&’) + iwo (z ’ ) ,  p = f,(z’) + i f o ( z ’ ) ,  

R 

(3.19) 

where wc, f,, wo and f o  are real functions. Now, using (3.18) and (3.19), the 
condition (3.1 5)  is satisfied identically. 
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4. The energy problem for rotating plane Couette flow when spiral 
vortex disturbances are assumed from the start 

A distinguished spiral direction (ex,) is found as a part of the solution of the 
linear stability problem. This direction is determined by the wave-number that 
gives the smallest eigenvalue R for a neutral solution (Re (CT) = 0) of the spectral 
problem. The spiral vortex disturbance is also observed in experiments. It is, 
therefore, reasonable to examine the consequence of assuming the preferred 
direction from the start. The aim here is an energy analysis, which takes 
advantage of the presumed spiral form for the disturbance. 

It will be convenient to decompose the motion along and normal to the 
direction x' in which u, v, w and p do not vary, e.g. u = u(y ' ,  z, t ) :  

U(z) = (1 - z )  [cos (x - 4)  ex, + sin (x - $) e,,], 

- Q = O2 cos $ex, - 8, eUr sin $ = O2 ex. 

(4 . la )  

(4.1 b )  
- 

and 

The governing equations for the x' independent disturbances are 

aU 1 -+ (u + U) .VU+ (2S1,sin $- cos (x- $ ) ) w  = - Viu, at R I 
-+ (u + U) .VV + (2G2 cos $ - sin (x - $)) w = - - av 
at 

where (4.24 

The boundary conditions are u = Ole=O,l  (4.2e) 

and u is almost periodic in y'. The disturbance velocity component u cannot 
be driven by a disturbance pressure gradient because the assumption that 
aujax' = 0 implies that a2p13/ax'2 = 0. Then ap/ax' = K(y ' , z ) ,  and, since p is 
almost periodic in x' ,  it is bounded as x'~-+cQ, and it follows that K = 0. 

There are several consequences of the independence of p upon x'. One conse- 
quence is the existence of two energy identities: one governing the energy of the 
longitudinal disturbances, 

1 I d  
--(u2} + (202 sin $ - cos (x - $)) (wu} = - - ( I v , u ~ ~ } ,  
2dt R (4.3a) 

and one governing the evolution of the energy of the transverse components, 

I d  1 
--{w2 + v2} - sin (x - $) (wv} - 2 0 2  sin $(wu} = - -( IV2wI2 + IV2v)2}. (4.3 b )  
2 at R 
Equations (4.3) are the subject of analysis of this section. We form the sum 

(4.3b)+h(4.3a),  with h > 0, and let $ = Jhu, to obtain 

4 d(w2+v2+ $2}/dt - sin (x- $) (wv} - ,/A cos (?I - $) (wQ} 
1 
R (w$> = --{1V2w12+ 1V2v12+ lV2$12). (4.4) 
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This is the equation governing the evolution of the disturbance energy when 
spiral vortices are assumed from the start; it can be written as 

and -6 - max- 
1 

R h -  H2 9 ’  

where H, is the set of x’ independent kinematically admissible vectors, i.e. 
vectors u satisfying (4 .2d ,  e ) ,  which are almost periodic functions of y’. 

The energy inequality (4.5) integrates to 

&(t) 6 &(0)exp - 2 h  --- t , i % dl (4.7) 

where 9 > 2R& for all u E H, and provided that R < R,. The criterion here is 
independent of the size of the initial disturbances and applies globally. It is 
clear that the vector u E H, which solves (4.6) is also the form of the x‘ independent 
disturbance whose energy increases initially at the smallest R. 

Again, h > 0 is a free parameter, which is selected to maximize the interval 
0 < R < R, on which global monotonic stability can be assured. Thus, 

(4.8) B(x, @, 0,) = max R,. 
h>O 

If R < B, rotating Couette flow is monotonically and globally stable to x‘ independent 
disturbances, making an angle $ with x (e, = -S2/1!21). 

Of course, one cannot know at the start whether nature will select a single 
direction x’ along which disturbances are constant. Moreover, even if such a 
direction is selected, it will not be possible to specifiy its angle @ with x at the 
start. However, one can seek the angle $ = @, for which 

R,(X, 4) = B(x,  $8 (x, a2 1 9 0 2  1 = min R (4.9) 
lk 

where 0 < $ < 2n. If R < w,, rotating CouetteJEow is monotonically and globally 
stable to x’ independent disturbances, making any angle $ with x. 

The values o f 2  and g8 depend strongly on the sign of the Rayleigh discrimi- 
nant. The first case to be considered is the case P 6 0. This corresponds to the 
situation in which the angular momentum increases outward in the rotating 
cylinder problem. This case includes plane Couette flow (B  = 0). The following 
theorem holds. Let P < 0. The x’ independent disturbance whose energy increases 
initially at the smallest value of R ( > R,) i s  a transverse vortex perpendicular to 
direction of the shearing motion. Moreover, R, = 177.22 i s  the value calculated by  
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Ow (1907). For, when F 6 0, one can find a value h = x = --4fi;sin2$/F > 0 
which will make the coeecient of (w4> in (4.6) vanish. Any other choice of h 
gives a larger value Rzl. Suppose (a,#) gives (4.6) its smallest value when 
h = x. Then the same maximum is attained for (6, - 6). One of these two pairs 
clearly makes RTl > RX1 when h + x. Hence h = x solves (4.8), i.e. 

1 sin (x - $) (W.> 

2 = mz{IVw12+ IVvl2+ pqq”>’ 
The maximizing vector clearly has 4 = 0. The maximum value of 

(wv>/< I v w  l + I v v  I9 
in H, is 1/177-22 (Orr 1907). Hence, 2 = 177*22/sin(x-$) and 

R, = m i n x  = 177.22 
9 

x-$ -1 is attained when B - 2n- 

(4.10) 

This is an Om-Sommerfeld type of two-dimensional disturbance which does 
not vary on lines perpendicular to  the plane of the motion. 

When F > 0, we cannot select a positive value of h which will make the 
coefficient of (w$> in (4.6) vanish. Then the optimizing value for (4.8), h = 1, 

a i a  is sought as the root of 
0 = = -- 

ah g ah ( - %). 

Since u is a maximizing vector, 

Hence, 

and 

(4.11) 

-3- A - = -% = 2JF(wq5)+sin(~-?/r)(wv), (4.12) 

1 - - max( - 3/9). 
Ha 

(4.13) 

It is convenient to  find R as an eigenvalue of Euler’s equations for (4.13): 

1 
dFq5 +*sin (2- $) v+-Viw = asp, 

sin +(x - $) w + - Viv = aU,p, 

R 
1 
R 

1 
JFw+-V$#I  = 0. 

R 
and 

Using the continuity equation (4.2d), and after normal-mode reduction to 
ordinary differential equations, one finds that 

L38 - 2i(frR) asin (x - $) LD8 + 4(3R)2 Fa2& = 0, (4.14 a) 

with t2 = D 8  = L2t2 = Ole=O,l. (4.14b) 
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The required stability limit is found as an eigenvalue of (4.14) : 

= minR(fiZ,,X,$,a). (4.15) 
a 

The criterion R < 2 guarantees stability for all disturbances making an angle $ 

(4.16) 
with x. The criterion R < mina = R, 

tl. 
suffices for stability to disturbances making any angle with x. The values R8 
and the minimizing angles $& are displayed in table 1 and in figure 3. 

R 

1 

FIGURE 3. Energy stability boundary for spiral disturbances of Couette flow in the rotating 
plane Couette flow limit (x = 90"). The heavy dark line is the stability boundary. The 
values g(@) ,  0" 6 @ 6 go", lie between k(Oo) and %(goo). When fi2 = 6: or fi2 = fi:*, 
we have R"($) = 177.2 for all @ in the first quadrant. For these values of fi2, the critical 
energy spiral disturbance is not a Taylor vortex ($ = 90'). It is a 'roller bearing' vortex 
($ = Oo). The 'roller bearing' initial condition can be achieved in the laboratory (see 
Coles 1965, plate 0). 

The stability criterion R < 2 has an interesting consequence when the velocity 
of sliding is zero (x = go"), and the disturbances are axisymmetric (+ = 90"). 
In  this case, referring first to the linear equations (3.9) and (3.10), we find that 
Y =  Im(cr), and (3.17) then implies Im(cr) = 0. This reduces (3.9) and (3.10) 
to the BBnard problem with minimum eigenvalue RLF = 1708, a = 3.12. On 
the other hand, with x = $, the energy equations ( 4 . 1 4 ~ ~ ~  b)  imply @P = 1708, 
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a = 3.12. Hence, fl = R, and the criterion R < fl i s  both necessary and suficient 
for global stability to axisymmetric disturbances.? 

What is the energy limit R8(a2)  = minfl($, 0,) = fl(~,&a,), a,) for the 

narrow-gap rotating cylinder problem (x = 90') among spiral disturbances 
which are not necessarily axisymmetric ? (Axisymmetric disturbances are Taylor 
vortices with $ = QO".) The answer, given by numerical analysis, is 

$ 

0: = 0.028, Q:* = 0.472, 

(i) 0; < 0, < a:*, 
(ii) a, < a:, fi2 > @*, $8(fi2) = 0") R8 = 177.2, 

(iii) a, = a:, 0, = @*, 0" < $& 6 QO", f18 = 177.2. 

$8(n2) = 90") 82.66 < R 8 ( a 2 )  < 177.2, 

For values of a, outside the interval [a:, a;*], the spiral vortex whose energy 
increases initially at the smallest R is not a Taylor vortex; it is a transverse 
vortex of Om's type. At the end of the interval [a:, @*I, every spiral angle 
0" < $& 6 90" gives the same eigenvalue f 1 8  = 177.2. 

5. Linear stability analysis of spiral Couette flow 
When 1-7 is not small, the stability problem becomes complicated by the 

geometry. I n  part 1, we simplified the problem by a mean-radius narrow-gap 
approximation. It was shown in part 1 that this approximation is reasonably 
accurate for the energy equations; but it turns out that the linear theory results 
based on the approximation need correction. The difference between the energy 
and linear theory, with regard t o  the approximation, can be traced to  the fact 
that  only derivatives of the basic spiral flow appear in the energy equations, and, 
for spiral Couette flow, these are very nearly constant. I n  the linear theory, the 
effect of U . Vu is not well approximated by a constant.$ 

We have calculated the linear stability limits numerically, without approxi- 
mation. The working equations for the calculation, derived below, are written 
in dimensionless variables with length scale R, - R, and velocity scale 
[UE + R:((n, - Q2)2]*. The Reynolds number is defined as in (3.4)) fi = - e, a, 

7 The coincidence between energy and linear limits here applies to all 8, for which 
B' > 0. In  contrast, if axial symmetry is not as_sumed from the start the coincidence of 
the energy and linear limits occurs only when a, = 

$ The mean radius results in figures 7 and 8 of part 1 are to be replaced with the 
numerical results of tables 2 and 3 and figure 4 of this part. The following are corri- 
genda t o  slips in part 1. Equation (4.26): {+, +(l-q)-l[. . .I-:} + {i, ( 1 - ~ ) - 1 [ .  . .I-$}. 

(5.1): Re ( w ) [ l ,  1, 11 + Re (w)[w, o, u]. (6.5): add U - curl u to the left-hand side. 

(8.1): U+-+ U,. (8.4): [ ( l - ~ ) / ( l + ~ ) l n ~ ] z + [ l - q ) / l n ~ ] z .  (9.4) 9 + p i Y .  Definitions 
of a,, a3, a5, b, on pp. 553-554: a,, h ( 1 , ~ )  +h(O, 7); a3, (In r . . . -+In v{ . . . and 

(Busse 1969). 

a 
ax 

1 Uc/Uol + [Uc/Vol (1 - v ) ;  b,, v In {. . . -+ r In r{ . . . . 
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T = U . V U + U . V U + ~ S ~ X U  = er 

+ e,(U. V u  + w~ U ) ,  

and note that the spectral problem of the linear theory is defined by 

where u satisfies (2.2ke). Now observe that 

r .V% = V2r .V + 2aXvx - 2 divv, (5.3) 

where r is the cylindrical radius vector (r.ex = 0), and v is any smooth 
vector field. Then form r.curl (5.2) and r.curl(cur1 (5.2)), using divu = 0, 
cur12T = -V2T+graddivT, etc., and (5.3), to find 

1 
R a(rQ) + r . curl T = - (Vz(rcr) + 2a.&), (5.4) 

where (see figure 1) 

1 
rc,. = r.curlu = -au/a$+rav/a~, <, = ;[-a,(rv)+awja#], 

1 1 
r R and ~ ~ ( V 2 f + 2 a , ~ ) + V ~ ( r ~ , ) + 2 a , ~ , - - a ~ ( r ~ d i v ~ )  = - (V4f+4aXV%), (5.5) 

where f = wr. It is convenient to differentiate (5.4) with respect to x and to 
eliminate u through the continuity equation. This leads to 

1 
r 

a,u = - - ( a p  + a,!) 

‘r2 l l  

1 
a,(&) = r a&v+pa$+v+-a:#f . ( and 

Eliminating u in this way leads to a coupled fourth-order and second-order 
equation for f and v. This set of equations is then reduced, by the usual Fourier 
methods, to 

= R (e-=f + iYLf + i D Y D f  - D(rV + Q 2 r 2 )  Df 
r r r2 

(5.6a) 



Global stability of spiral $ow. Part 2 607 

and 

(5.6b) 

6 2  

7 = 0.8 0.40 
x = 10" 0.70 

1.00 
1.2914 
1.40 
1.80 
2.20 

?/ = 0.8 0.10 
x = 30" 0.20 

0.30 
0.35 
0.424 
0.50 
0.60 
0.70 
0.80 
0.90 
1.10 
1.30 

0.05 
0.10 
0.15 
0.2125 
0.30 
0.40 
0.50 
0.56 

?% 

13 
13 
14 
14 
14 
14 
14 

11 
11 
11 
12 
12 
12 
12 
12 
12 
12 
12 
11 

6 
6 
6 
7 
7 
8 
8 
8 

a 

- 1.098 
- 0.896 
- 0-750 
- 0.605 
- 0.564 
- 0.447 
- 0-366 

- 1.892 
- 1.876 
- 1.788 
- 1.814 
- 1.698 
- 1.559 
- 1.383 
- 1.211 
- 1.061 
- 0'937 
- 0.751 
- 0.562 

- 2.804 
- 2.794 
- 2.762 
- 2.825 
- 2.683 
- 2.566 
- 2.045 
- 1.694 

Im (4 
0.276288 
0.1828 15 
0,095444 
0.026828 
0.0073058 

- 0'048508 
- 0.086823 

0-193735 
0.189563 
0.152884 
0.113088 
0.066105 
0.009080 

- 0.063900 
- 0.135777 
- 0.198695 
- 0.25082 
-0.329160 
- 0.354939 

0.114541 
0.1 13722 
0.107739 
0.030643 
0.0018589 

- 0.117776 
- 0.242451 
- 0.329572 

RL 
96-397 
85-431 
83.000 
82.576 
82.607 
83.030 
83.605 

106-431 
89.193 
82.663 
81-321 
80.605 
81.193 
83.368 
86.572 
90.415 
54.638 

103.62 
112.83 

90.184 
82.291 
78.328 
76.S07 
79.878 
93.323 

135.95 
251.97 

TABLE 2. Values of the critical parameters of linear theory when 7 = 0.8 

where 
nV Y= I m ( a ) + r + a U ,  

and L = D2 + D/r - (n2 + a 2 @ ) / ~ 2 .  

Equations (5 .6a7b)  are to be solved relative to the boundary conditions a t  
Y = 1/(1-7) and r = r/(l - v ) ~  

f = D f  = v =  0, ( 5 . 6 ~ )  

by a standard Runge-Kutta forward integration scheme in which both R and 
Im (CT) are varied using the method of chords. Here, either of the pair of values 
may be regarded as the eigenvalue parameter. Despite the fact that Im ((T) + 0 
when x + 90' the numerical integration is straightforward. The numerical 
results are summarized in table 2 (7 = 0.8) and table 3 (7 = 0-5). The instability 
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limit RL, the wave speed Im (u) and the azimuthal periodicity n of the spira.1 
disturbance are important experimental observables. The number of vortices 
seen in any given experiment should correspond to the member of zeros (2n) of 
cos ngi of the eigenfunction belonging to RL. 

7 = 0.5 
x = 30" 

a, 
7 = 0.5 0.20 
12: = 10" 0.50 

0.80 
1.0962 
1.30 
1.70 
2.00 
2.50 
3.00 

0 
0.10 
0.20 
0.3112 
0.40 
0.50 
0.60 
0.70 
0.80 

7 = 0.5 - 0.17 
x = 60" - 0.10 

- 0.0 
0.0844 
0.12 
0.16 
0.24 
0.30 
0.35 

n 

4 
4 
4 
4 
4 
4 
4 
4 
4 

3 
3 
4 
4 
4 
4 
4 
4 
4 

2 
2 
2 
2 
2 
2 
2 
2 
2 

a 
- 1.160 
- 1.020 
- 0.779 
- 0.606 
- 0.519 
- 0.402 
- 0.342 
- 0.273 
- 0.226 

- 1.900 
- 1.8725 
-2.1175 
- 1.942 
- 1.761 
- 1.550 
- 1.349 
- 1.1725 
- 1.025 

- 3'163 
- 3.028 
- 2.941 
- 2.864 
- 2.820 
- 2'764 
- 2.590 
- 2.360 
- 2'068 

Im (4 
0.29303 
0.24254 
0.14046 
0.06506 
0.02682 

- 0.02485 
- 0.05142 
- 0.08198 
-0'10279 

0.28267 
0.278809 
0.22923 
0.16945 
0.10412 

- O.02531 
- 0.052 16 
- 0'121304 
-0'17955 

0.17473 
0.14854 
0.14210 
0.13640 
0.130254 
0.12309 
0.09340 
0.04702 

- 0.01678 

RL 
113.073 
88.413 
84.435 
84.158 
84.492 
85.390 
86.065 
86.996 
87.700 

103.246 
86.623 
80.398 
78.660 
79.864 
83.150 
87.943 
93.818 

100.535 

102.471 
83.136 
72.601 
70.730 
71.311 
73.049 
80.989 
93.8165 

114.558 

TABLE 3. Values of the critical parameters of linear theory when 7 = 0.5 

6. Comparison of theory and experiment 
Consider first the narrow-gap problem for which rotating plane Couette flow 

is representative. Here the linear theory gives instability when F > 0, and 
stability when P < 0. The equality may be thought to represent the situation 
in which either the angular momentum of the basic spiral flow is constant in 
planes parallel t o  the plane of the disturbance, or it can represent plane Couette 
flow in a non-rotating system fllz = F = 0. The condition P < 0 is satisfied 
by rotating cylinders in which the outer cylinder rotates much faster than 
the inner one. The linear theory of stability of plane Couette flow without 
rotation has never indicated anything other than absolute stability for this 
flow.? 

t Hopf (1914), Southwell & Chitty (1930), Morawetz (1952), Wasow (1953), Grohne 
(1954), Gallagher & Mercer (1962), Riis (1962), Deardorf (1963), Dikii (1960). 
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The experimental results of Schulz-Grunow (1958), for the allied problem 
of rotating cylinders with the inner one at rest, do seem to indicate that, if 
the amplitude of the disturbances is suppressed, then Couette flow is stable 
even at  very large Reynolds numbers. On the other hand, for the same flow 
in natural circumstances, Couette (1890), Mallock (1881) and Taylor (1923), 
among others, find a natural transition to turbulence. Reichardt (1956) claims 
to find that the plane Couette flow achieved in his experiments is stable when 

It seems that the mechanics of instability of non-rotating plane Couette flow 
in natural circumstances is associated with the non-linear term u x curl u 
neglected in linear analysis. In  the case of Couette flow, instability a t  any R has 
yet to be established theoretically. 

The following is true when the sign of the Rayleigh discriminant F is negative 
(stability according to Rayleigh’s criterion). The experimental limits of in- 
stability are larger by a factor of 20 than the critical energy value R = 2 41708, 
below which all kinematically admissible disturbances decay. Among all 
the kinematically admissible disturbances, the disturbance which makes 
the energy (uz + w2 + w2} increase at the smallest R > 2 41708 is a longitudinal 
vortex. 

Among all the kinematically admissible x’ independent disturbances (spiral 
vortices with axis x‘), the one whose weighted energy (hu2+ w 2  + w2) increases at 
the smallest R ( > 177-2) is a transverse vortex u = 0 whose axis is perpendicular 
to the basic flow. This critical energy value, R = 177.2, is about ten times lower 
than the experimentally observed instability limit. The situation is greatly 
changed when F > 0: there is a dynamic source for converting the energy of 
rotation into disturbance energy. The threshold of instability is lowered to 
energy-like values, and, when the rotation parameters are optimally adjusted 
(see part l ) ,  there is perfect, or nearly perfect, agreement between the energy 
and linear theories. 

The comparison of the theoretical results with the experiment of Ludwieg 
(1964) is developed below. Ludwieg’s apparatus is like a long sleeve bearing, 
which is rotated around its axis at a fixed angular velocity, and is geared to a 
shaft in the bearing in such a way that the shaft can be made to turn and slide 
relative to the rotating bearing. Since the clearance is small (y = 0.8), the flow 
develops almost instantly, and is very nearly linear shear. The relations, between 
the parameters of Ludwieg’s experiment and those in parts 1 and 2, are given in 
part 1. The critical parameters of Ludwieg’s experiment, and of the various 
theories, are shown in figure 4; the graphs marked ‘linear theory’ are taken from 
the numerical integration for T,I = 0.8 (table 2). 

The nearly perfect agreement between the linear theory and Ludwieg’s 
experiment shows that the instability observed here is not subcritical. Figure 4 
shows good agreement between the threshold limit and the spiral angle. The 
wave speed (Im(r) ,  see table 2 )  and the spiral vortex spacing (values n, see 
table 2) are not reported in Ludwieg’s experiment. The curves marked ‘energy 
(i) ’ give values associated with the disturbance whose energy increases initially 
at the smallest R (see part 1). The curves marked ‘energy (ii)’ are taken from 

U,(R2- R,)/v < 1500. 

F L M  51 39 
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the calculation of $4 for the rotating plane Couette flow. The spiral angle $ 
is, in this case, the limiting 7 -+ 1 value. 

In explanation of the two energy analyses consider points A ,  B and C in 

I 

>/ -Stable 
Unstable 

I 1 1 1 1 1 1 1 1  

0. - 

- 

-90" 

n 

Energy (i) 

- 
- 
- 

5 * 
2 
m 

-30" 

0 

I 

- 
- 
- 

-- 
I I I I I 1 I I  

X 
FIGWE 4. Comparison of theory and experiment (Ludwieg 1964) for 7 = 0.8, 

(R,-R,)2Q,/v = 150. Black dots are unstable, white ones stable. 

figure 4. At A we take critical energy disturbance which is a spiral vortex along 
energy spiral (i), At B we consider the extremalizing solution of problem (4.9). 
This is also a spiral vortex whose axis lies along energy spiral (ii). At C the energy 
of disturbance A increases initially, and the weighted energy of disturbance B 
decreases. The same weighted energy, but of A rather than B, decreases at  a yet 
faster rate than B. Hence, the difference between the rate of change of the energy 
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of A which is positive, and the weighted energy which is negative, is strongly 
positive. 

To test the theoretical predictions of energy theory, it would be necessary to 
determine if the initial conditions whose energy will increase at  values of R > R8 
are sufficiently representative of physically realizable initial conditions. It would 
appear, from experiments, that, even if such energetic disturbances are realizable, 
they are globally stable and eventually decay. 
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